Data for the Heat Pump System: Heating Season 2016-2017

I update the documentation of measurement data [PDF] about twice a year. This post is to provide a quick overview for the past season.

The PDF also contains the technical configuration and sizing data. Based on typical questions from an ‘international audience’ I add a summary here plus some ‘cultural’ context:

Building: The house is a renovated, nearly 100-year old building in Eastern Austria: a typical so-called ‘Streckhof’ – an elongated, former small farmhouse. Some details are mentioned here. Heating energy for space heating of two storeys (185m2) and hot water is about 17.000-20.000kWh per year. The roof / attic had been rebuilt in 2008, and the facade was thermally insulated. However, the major part of the house is without an underground level, so most energy is lost via ground. Heating only the ground floor (75m2) with the heat pump reduces heating energy only by 1/3.

Climate: This is the sunniest region of Austria – the lowlands of the Pannonian Plain bordering Hungary. We have Pannonian ‘continental’ climate with low precipitation. Normally, monthly average temperatures in winter are only slightly below 0°C in January, and weeks of ‘ice days’ in a row are very rare.

Heat energy distribution and storage (in the house): The renovated first floor has floor loops while at the ground floor mainly radiators are used. Wall heating has been installed in one room so far. A buffer tank is used for the heating water as this is a simple ‘on-off’ heat pump always operating at about its rated power. Domestic hot water is heated indirectly using a hygienic storage tank.

Heating system. An off-the-shelf, simple brine-water heat pump uses a combination of an unglazed solar-air collector and an underwater water tank as a heat source. Energy is mainly harvested from rather cold air via convection.

Addressing often asked questions: Off-the-shelf =  Same type of heat pump as used with geothermal systems. Simple: Not-smart, not trying to be the universal energy management system, as the smartness in our own control unit and logic for managing the heat source(s). Brine: A mixture of glycol and water (similar to the fluid used with flat solar thermal collectors) = antifreeze as the temperature of brine is below 0°C in winter. The tank is not a seasonal energy storage but a buffer for days or weeks. In this post hydraulics is described in detail, and typical operating conditions throughout a year. Both tank and collector are needed: The tank provides a buffer of latent energy during ‘ice periods’ and it allows to harvest more energy from air, but the collector actually provides for about 75% of the total ambient energy the heat pump needs in a season.

Tank and collector are rather generously sized in relation to the heating demands: about 25m3 volume of water (total volume +10% freezing reserve) and 24m2 collector area.

The overall history of data documented in the PDF also reflects ongoing changes and some experiments, like heating the first floor with a wood stove, toggling the effective area of the collector used between 50% and 100%, or switching off the collector to simulate a harsher winter.

Data for the past season

Finally we could create a giant ice cube naturally. 14m3 of ice had been created in the coldest January since 30 years. The monthly average temperature was -3,6°C, 3 degrees below the long-term average.

(Re the oscillations of the ice volume are see here and here.)

We heated only the ground floor in this season and needed 16.600 kWh (incl. hot water) – about the same heating energy as in the previous season. On the other hand, we also used only half of the collector – 12m2. The heating water inlet temperatures for radiators was even 37°C in January.

For the first time the monthly performance factor was well below 4. The performance factor is the ratio of output heating energy and input electrical energy for heat pump and brine pump. In middle Europe we measure both energies in kWh 😉 The overall seasonal performance factor was 4,3.

The monthly performance factor is a bit lower again in summer, when only hot water is heated (and thus the heat pump’s COP is lower because of the higher target temperature).

Per day we needed about 100kWh of heating energy in January, while the collector could not harvest that much:

In contrast to the season of the Ice Storage Challenge, also the month before the ‘challenge’ (Dec. 2016) was not too collector-friendly. But when the ice melted again, we saw the usual large energy harvests. Overall, the collector could contribute not the full ‘typical’ 75% of ambient energy this season.

(Definitions, sign conventions explained here.)

But there was one positive record, too. In a hot summer of 2017 we consumed the highest cooling energy so far – about 600kWh. The floor loops are used for passive cooling; the heating buffer tank is used to transfer heat from the floor loops to the cold underground tank. In ‘colder’ summer nights the collector is in turn used to cool the tank, and every time hot tap water is heated up the tank is cooled, too.

Of course the available cooling power is just a small fraction of what an AC system for the theoretical cooling load would provide for. However, this moderate cooling is just what – for me – makes the difference between unbearable and OK on really hot days with more than 35°C peak ambient temperature.

Leave a Comment

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s