Simulating Peak Ice

This year ice in the tank was finally melted between March 5 to March 10 – as ‘visual inspection’ showed. Level sensor Mr. Bubble was confused during the melting phase; thus it was an interesting exercise to compare simulations to measurements.

Simulations use the measured ambient temperature and solar radiation as an input, data points are taken every minute. Air temperature determines the heating energy needed by the house: Simulated heat load is increasing linearly until a maximum ‘cut off’ temperature.

The control logic of the real controller (UVR1611 / UVR16x2) is mirrored in the simulation: The controller’s heating curve determines the set temperature for the heating water, and it switches the virtual 3-way valves: Diverting heating water either to the hygienic storage or the buffer tank for space heating, and including the collector in the brine circuit if air temperature is high enough compared to brine temperature. In the brine circuit, three heat exchangers are connected in series: Three temperatures at different points are determined self-consistently from three equations that use underground tank temperature, air temperature, and the heat pump evaporator’s power as input parameters.

The hydraulic schematic for reference, as displayed in the controller’s visualization (See this article for details on operations.)

The Coefficient of Performance of the heat pump, its heating power, and its electrical input power are determined by heating water temperature and brine temperature – from polynomial fit curves to vendors’ data sheet.

So for every minute, the temperatures of tanks – hot and cold – and the volume of ice can be calculated from energy balances. The heating circuits and tap water consume energy, the heat pump delivers energy. The heat exchanger in the tank releases energy or harvests energy, and the collector exchanges energy with the environment. The heat flow between tank and ground is calculated by numerically solving the Heat Equation, using the nearly constant temperature in about 10 meters depth as a boundary condition.

For validating the simulation and for fine-tuning input parameters – like the thermal properties of ground or the building – I cross-check calculated versus measured daily / monthly energies and average temperatures.

Measurements for this winter show the artificial oscillations during the melting phase because Mr. Bubble faces the cliff of ice:

Simulations show growing of ice and the evolution of the tank temperature in agreement with measurements. The melting of ice is in line with observations. The ‘plateau’ shows the oscillations that Mr. Bubble notices, but the true amplitude is smaller:

2016-09 - 2017-03: Temperatures and ice formation - simulations.

Simulated peak ice is about 0,7m3 greater than the measured value. This can be explained by my neglecting temperature gradients within water or ice in the tank:

When there is only a bit of ice yet (small peak in December), tank temperature is underestimated: In reality, the density anomaly of water causes a zone of 4°C at the bottom, below the ice.

When the ice block is more massive (end of January), I overestimate brine temperature as ice has less than 0°C, at least intermittently when the heat pump is turned on. Thus the temperature difference between ambient air and brine is underestimated, and so is the simulated energy harvested from the collector – and more energy needs to be provided by freezing water.

However, a difference in volume of less than 10% is uncritical for system’s sizing, especially if you err on the size of caution. Temperature gradients in ice and convection in water should be less critical if heat exchanger tubes traverse the volume of tank evenly – our prime design principle.

I have got questions about the efficiency of immersed heat exchangers in the tank – will heat transfer deteriorate if the layer of ice becomes too thick? No, according also to this very detailed research report on simulations of ‘ice storage heat pump systems’ (p.5). We grow so-called ‘ice on coil’ which is compared to flat-plate heat exchangers:

… for the coil, the total heat transfer (UA), accounting for the growing ice surface, shows only a small decrease with growing ice thickness. The heat transfer resistance of the growing ice layer is partially compensated by the increased heat transfer area around the coil. In the case of the flat plate, on the contrary, also the UA-value decreases rapidly with growing ice thickness.


For system’s configuration data see the last chapter of this documentation.

Leave a Comment

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s