You Never Know

… when obscure knowledge comes in handy!

You can dismantle an old gutter without efforts, and without any special tools:

Just by gently setting it into twisted motion, effectively applying ~1Hz torsion waves that would lead to fatigue break within a few minutes.

I knew my stint in steel research in the 1990s would finally be good for something.

If you want to create a meme from this and tag it with Work Smart Not Harder, don’t forget to give me proper credits.

Ploughing Through Theoretical Physics Textbooks Is Therapeutic

And finally science confirms it, in a sense.

Again and again, I’ve harped on this pet theory of mine – on this blog and elsewhere on the web: At the peak of my immersion in the so-called corporate world, as a super-busy bonus miles-collecting consultant, I turned to the only solace: Getting up (even) earlier, and starting to re-read all my old mathematics and physics textbooks and lecture notes.

The effect was two-fold: It made me more detached, perhaps more Stoic when facing the seemingly urgent challenges of the accelerated world. Maybe it already prepared me for a long and gradual withdrawal from that biosphere. But surprisingly, I felt it also made my work results (even ;-)) better: I clearly remember compiling documentation I wrote after setting up some security infrastructure with a client. Writing precise documentation was again more like casting scientific research results into stone, carefully picking each term and trying to be as succinct as possible.

As anybody else I enjoy reading about psychological research that confirms my biases one-datapoint-based research – and here it finally is. Thanks to Professor Gary for sharing it. Science says that Corporate-Speak Makes You Stupid. Haven’t we – Dilbert fans – always felt that this has to be true?

… I’ve met otherwise intelligent people, after working with management consultant, are convinced that infinitely-malleable concepts like “disruptive innovation,” “business ecosystem,” and “collaborative culture” have objective value.

In my post In Praise of Textbooks with Tons of Formulas I focused on possible positive explanations, like speeding up your rational System 2 ((c) Daniel Kahneman) – by getting accustomed to mathematics again. By training yourself to recognize patterns and to think out of the box when trying to find the clever twist to solve a physics problem. Re-reading this, I cringe though: Thinking out of the box has entered the corporate vocabulary already. Disclaimer: I am talking about ways to pick a mathematical approach, by drawing on other, slightly related problems intuitively – in the way Kahneman explains the so-called intuition of experts as pattern recognition.

But perhaps the explanation is really as simple as that we just need to shield ourselves from negative effects of certain ecosystems and cultures that are particularly intrusive and mind-bending. So this is my advice to physics and math graduates: Do not rely on your infamous analytical skills forever. First, using that phrase in a job application sounds like phony hollow BS (as unfortunately any self-advertising of social skills does). Second, these skills are real, but they will decay exponentially if you don’t hone them.

6 volumes on all of Theoretical Physics - 1960s self-consistent series by my late professor Wilhelm Macke

Simulating Peak Ice

This year ice in the tank was finally melted between March 5 to March 10 – as ‘visual inspection’ showed. Level sensor Mr. Bubble was confused during the melting phase; thus it was an interesting exercise to compare simulations to measurements.

Simulations use the measured ambient temperature and solar radiation as an input, data points are taken every minute. Air temperature determines the heating energy needed by the house: Simulated heat load is increasing linearly until a maximum ‘cut off’ temperature.

The control logic of the real controller (UVR1611 / UVR16x2) is mirrored in the simulation: The controller’s heating curve determines the set temperature for the heating water, and it switches the virtual 3-way valves: Diverting heating water either to the hygienic storage or the buffer tank for space heating, and including the collector in the brine circuit if air temperature is high enough compared to brine temperature. In the brine circuit, three heat exchangers are connected in series: Three temperatures at different points are determined self-consistently from three equations that use underground tank temperature, air temperature, and the heat pump evaporator’s power as input parameters.

The hydraulic schematic for reference, as displayed in the controller’s visualization (See this article for details on operations.)

The Coefficient of Performance of the heat pump, its heating power, and its electrical input power are determined by heating water temperature and brine temperature – from polynomial fit curves to vendors’ data sheet.

So for every minute, the temperatures of tanks – hot and cold – and the volume of ice can be calculated from energy balances. The heating circuits and tap water consume energy, the heat pump delivers energy. The heat exchanger in the tank releases energy or harvests energy, and the collector exchanges energy with the environment. The heat flow between tank and ground is calculated by numerically solving the Heat Equation, using the nearly constant temperature in about 10 meters depth as a boundary condition.

For validating the simulation and for fine-tuning input parameters – like the thermal properties of ground or the building – I cross-check calculated versus measured daily / monthly energies and average temperatures.

Measurements for this winter show the artificial oscillations during the melting phase because Mr. Bubble faces the cliff of ice:

Simulations show growing of ice and the evolution of the tank temperature in agreement with measurements. The melting of ice is in line with observations. The ‘plateau’ shows the oscillations that Mr. Bubble notices, but the true amplitude is smaller:

2016-09 - 2017-03: Temperatures and ice formation - simulations.

Simulated peak ice is about 0,7m3 greater than the measured value. This can be explained by my neglecting temperature gradients within water or ice in the tank:

When there is only a bit of ice yet (small peak in December), tank temperature is underestimated: In reality, the density anomaly of water causes a zone of 4°C at the bottom, below the ice.

When the ice block is more massive (end of January), I overestimate brine temperature as ice has less than 0°C, at least intermittently when the heat pump is turned on. Thus the temperature difference between ambient air and brine is underestimated, and so is the simulated energy harvested from the collector – and more energy needs to be provided by freezing water.

However, a difference in volume of less than 10% is uncritical for system’s sizing, especially if you err on the size of caution. Temperature gradients in ice and convection in water should be less critical if heat exchanger tubes traverse the volume of tank evenly – our prime design principle.

I have got questions about the efficiency of immersed heat exchangers in the tank – will heat transfer deteriorate if the layer of ice becomes too thick? No, according also to this very detailed research report on simulations of ‘ice storage heat pump systems’ (p.5). We grow so-called ‘ice on coil’ which is compared to flat-plate heat exchangers:

… for the coil, the total heat transfer (UA), accounting for the growing ice surface, shows only a small decrease with growing ice thickness. The heat transfer resistance of the growing ice layer is partially compensated by the increased heat transfer area around the coil. In the case of the flat plate, on the contrary, also the UA-value decreases rapidly with growing ice thickness.


For system’s configuration data see the last chapter of this documentation.

Mr. Bubble Was Confused. A Cliffhanger.

This year we experienced a record-breaking January in Austria – the coldest since 30 years. Our heat pump system produced 14m3 of ice in the underground tank.

The volume of ice is measured by Mr. Bubble, the winner of The Ultimate Level Sensor Casting Show run by the Chief Engineer last year:

The classic, analog level sensor was very robust and simple, but required continuous human intervention:

Level sensor: The old way

So a multitude of prototypes had been evaluated …

Level sensors: The precursors

The challenge was to measure small changes in level as 1 mm corresponds to about 0,15 m3 of ice.

Mr. Bubble uses a flow of bubbling air in a tube; the measured pressure increases linearly with the distance of the liquid level from the nozzle:


Mr. Bubble is fine and sane, as long as ice is growing monotonously: Ice grows from the heat exchanger tubes into the water, and the heat exchanger does not float due to buoyancy, as it is attached to the supporting construction. The design makes sure that not-yet-frozen water can always ‘escape’ to higher levels to make room for growing ice. Finally Mr. Bubble lives inside a hollow cylinder of water inside a block of ice. As long as all the ice is covered by water, Mr. Bubble’s calculation is correct.

But when ambient temperature rises and the collector harvests more energy then needed by the heat pump, melting starts at the heat exchanger tubes. The density of ice is smaller than that of water, so the water level in Mr. Bubble’s hollow cylinder is below the surface level of ice:

Mr. Bubble is utterly confused and literally driven over the edge – having to deal with this cliff of ice:

When ice is melted, the surface level inside the hollow cylinder drops quickly as the diameter of the cylinder is much smaller than the width of the tank. So the alleged volume of ice perceived by Mr. Bubble seems to drop extremely fast and out of proportion: 1m3 of ice is equivalent to 93kWh of energy – the energy our heat pump would need on an extremely cold day. On an ice melting day, the heat pump needs much less, so a drop of more than 1m3 per day is an artefact.

As long as there are ice castles on the surface, Mr. Bubble keeps underestimating the volume of ice. When it gets colder, ice grows again, and its growth is then overestimated via the same effect. Mr. Bubble amplifies the oscillations in growing and shrinking of ice.

In the final stages of melting a slab-with-a-hole-like structure ‘mounted’ above the water surface remains. The actual level of water is lower than it was before the ice period. This is reflected in the raw data – the distance measured. The volume of ice output is calibrated not to show negative values, but the underlying measurement data do:

Only when finally all ice has been melted – slowly and via thermal contact with air – then the water level is back to normal.

In the final stages of melting parts of the suspended slab of ice may break off and then floating small icebergs can confuse Mr. Bubble, too:

So how can we picture the true evolution of ice during melting? I am simulating the volume of ice, based on our measurements of air temperature. To be detailed in a future post – this is my cliffhanger!

>> Next episode.

Where to Find What?

I have confessed on this blog that I have Mr. Monk DVDs for a reason. We like to categorize, tag, painstakingly re-organize, and re-use. This is reflected in our Innovations in Agriculture …

The Seedbank: Left-over squared timber met the chopsaw.

The Nursery: Rebirth of copper tubes and newspapers.

… as well as in my periodical Raking The Virtual Zen Garden: Updating collections of web resources, especially those related to the heat pump system.

Here is a list of lists, sorted by increasing order of compactification:

But thanks to algorithms, we get helpful advice on presentation from social media platforms: Facebook, for example, encouraged me to tag products in the following photo, so here we go:

“Hand-crafted, artisanal, mobile nursery from recycled metal and wood, for holding biodegradable nursery pots.” Produced without crowd-funding and not submitted to contests concerned with The Intersection of Science, Art, and Innovation.

The Stages of Blogging – an Empirical Study

… with sample size 1.

Last year, at the 4-years anniversary, I presented a quantitative analysis – in line with the editorial policy I had silently established: My blogging had turned from quasi-philosophical ramblings on science, work, and life to no-nonsense number crunching.

But the comment threads on my recent posts exhibit my subconsciousness spilling over. So at this anniversary, I give myself permission to incoherent reminiscences. I have even amended the tagline with this blog’s historical title:

Theory and Practice of Trying to Combine Just Anything.

Anecdotal evidence shows that many people start a blog, or another blog, when they are in a personal or professional transition. I had been there before: My first outburst of online writing on my personal websites predated quitting my corporate job and starting our business. The creative well ran dry, after I had taken the decision and had taken action – in the aftermath of that legendary journey.

I resurrected the old websites and I started this blog when I was in a professional no-man’s-land: Having officially left IT security, still struggling with saying No to project requests, working on our pilot heat pump system in stealth mode, and having enrolled in another degree program in renewable energies.

The pseudonymous phase: Trying out the new platform, not yet adding much About Me information. Playing. In the old times, I had a separate domain with proper name for that ( This WordPress blog was again a new blank sheet of paper, and I took the other sites offline temporarily, to celebrate this moment.

The discovery of a new community: The WordPress community was distinct from all other professional communities and social circles I was part of. It seems that new bloggers always flock together in groups, perhaps WordPress’ algorithms facilitate that. I participated with glee in silly blogging award ceremonies. However, I missed my old communities, and I even joined Facebook to re-unite with some of them. Living in separate worlds, sometimes colliding in unexpected ways, was intriguing.

Echoes of the past: I write about Difficult Things That I Handled In the Past – despite or because I have resolved those issues long before. This makes all my Life / Work / Everything collections a bit negative and gloomy. I blogged about my leaving academia, and my mixed memories of being part of The Corporate World. It is especially the difficult topics that let me play with geeky humor and twisted sarcasm.

The self-referential aspect: Online writing has always been an interesting experiment: Writing about technology and life, but also using technology. As philosophers of the web have pointed out, the internet or the medium in general modifies the message. I play with websites’ structure and layout, and I watch how my online content is impacted by seemingly cosmetic details of presentation.

Series of posts – find our favorite topic: I’ve never participated in blogging challenges, like one article a day. But I can understand that such blogging goals help to keep going. I ran a series on quantum field theory, but of course my expertise was Weird Internet Poetry … yet another demonstration of self-referentiality.

The unexpected positive consequences of weird websites – perhaps called ‘authentic’ today. They are a first class filter. Only people who share your sense of humor with contact you – and sense of humor is the single best criterion to find out if you will work well with somebody.

Writing about other people’s Big Ideas versus your own quaint microcosmos. I have written book reviews, and featured my favorite thinkersideas. I focussed on those fields in physics that are most popular (in popular science). My blog’s views had their all-time-high. But there are thousands of people writing about those Big Things. Whatever you are going to write about, there is one writer who cannot only write better, but who is also more of a subject matter expert, like a scientist working also as a science writer. This is an aspect of my empirical rule about your life being cliché. The remaining uncharted territory was my own small corner of the world.

Skin in the Game versus fence-sitting. Lots of people have opinions on many things on the internet. The preferred publication is a link to an article plus a one-liner of an opinion. Some people might really know something about the things they have opinions on. A minority has Skin in the Game, that is: Will feel the consequences of being wrong, personally and financially. I decided to focus on blogging about topics that fulfill these criteria: I have 1) related education and theoretical knowledge, 2) practical hands-on experience, 3) Skin in the Game. Priorities in reverse order.

The revolutionary experiment: Blogging without the motivational trigger of upcoming change. Now I have lacked the primary blogging impulse for a while. I am contented and combine anything in practice since a while. But I don’t have to explain anything to anybody anymore – including myself. I resorted to playing with data – harping on engineering details. I turn technical questions I get into articles, and I spend a lot of time on ‘curating’: creating list of links and overview pages. I have developed the software for my personal websites from scratch, and turned from creating content to structure for a while.

Leaving your comfort zone: I do edit, re-write, and scrutinize blog postings here relentlessly. I delete more content again than I finally publish, and I – as a text-only Courier New person – spend considerable time on illustrations. This is as much as I want to leave my comfort zone, and it is another ongoing experiment – just as the original stream-of-consciousness writing was.

But perhaps I will write a post like this one now and then.

Pine trees in Tenerife.

Ice Storage Hierarchy of Needs

Data Kraken – the tentacled tangled pieces of software for data analysis – has a secret theoretical sibling, an older one: Before we built our heat source from a cellar, I developed numerical simulations of the future heat pump system. Today this simulation tool comprises e.g. a model of our control system, real-live weather data, energy balances of all storage tanks, and a solution to the heat equation for the ground surrounding the water/ice tank.

I can model the change of the tank temperature and  ‘peak ice’ in a heating season. But the point of these simulations is rather to find out to which parameters the system’s performance reacts particularly sensitive: In a worst case scenario will the storage tank be large enough?

A seemingly fascinating aspect was how peak ice ‘reacts’ to input parameters: It is quite sensitive to the properties of ground and the solar/air collector. If you made either the ground or the collector just ‘a bit worse’, ice seems to grow out of proportion. Taking a step back I realized that I could have come to that conclusion using simple energy accounting instead of differential equations – once I had long-term data for the average energy harvesting power of the collector and ground. Caveat: The simple calculation only works if these estimates are reliable for a chosen system – and this depends e.g. on hydraulic design, control logic, the shape of the tank, and the heat transfer properties of ground and collector.

For the operations of the combined tank+collector source the critical months are the ice months Dec/Jan/Feb when air temperature does not allow harvesting all energy from air. Before and after that period, the solar/air collector is nearly the only source anyway. As I emphasized on this blog again and again, even during the ice months, the collector is still the main source and delivers most of the ambient energy the heat pump needs (if properly sized) in a typical winter. The rest has to come from energy stored in the ground surrounding the tank or from freezing water.

I am finally succumbing to trends of edutainment and storytelling in science communications – here is an infographic:

Ambient energy needed in Dec/Jan/Fec - approximate contributions of collector, ground, ice

(Add analogies to psychology here.)

Using some typical numbers, I am illustrating 4 scenarios in the figure below, for a  system with these parameters:

  • A cuboid tank of about 23 m3
  • Required ambient energy for the three ice months is ~7000kWh
    (about 9330kWh of heating energy at a performance factor of 4)
  • ‘Standard’ scenario: The collector delivers 75% of the ambient energy, ground delivers about 18%.
  • Worse’ scenarios: Either collector or/and ground energy is reduced by 25% compared to the standard.

Contributions of the three sources add up to the total ambient energy needed – this is yet another way of combining different energies in one balance.

Contributions to ambient energy in ice months - scenarios.

Ambient energy needed by the heat pump in  Dec+Jan+Feb,  as delivered by the three different sources. Latent ‘ice’ energy is also translated to the percentage of water in the tank that would be frozen.

Neither collector nor ground energy change much in relation to the base line. But latent energy has to fill in the gap: As the total collector energy is much higher than the total latent energy content of the tank, an increase in the gap is large in relation to the base ice energy.

If collector and ground would both ‘underdeliver’ by 25% the tank in this scenario would be frozen completely instead of only 23%.

The ice energy is just the peak of the total ambient energy iceberg.

You could call this system an air-geothermal-ice heat pump then!